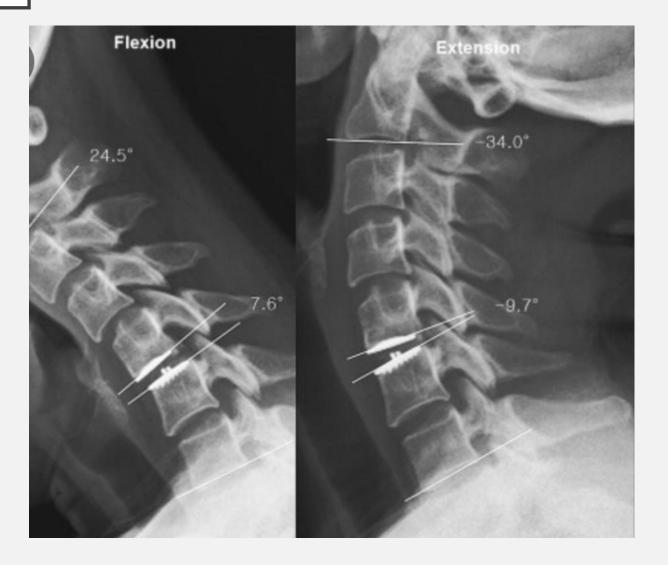
Does Disc Distraction After Cervical Total Disc Arthroplasty Impact Range of Motion and Patient Reported Outcomes?

Authors: Vincent P. Federico, MD; Athan G. Zavras, BS; Alexander Butler, MD; Mohammed A. Munim, BS; Michael T. Nolte, MD; Wylie Lopez, MD; Gregory D. Lopez, MD; Howard S. An, MD; Matthew W. Colman, MD; Frank M. Phillips, MD


Rush University Medical Center, Division of Orthopaedic Spine Surgery

INTRODUCTION

- TDA has shown to be equivalent or even superior to anterior cervical discectomy and fusion (ACDF) with regards to:
 - Patient reported outcomes (PROs)
 - Device-related serious adverse events
 - Subsequent surgery at the index and adjacent levels
- More recently, studies have suggested that overdistraction can lead to reduced ROM and clinical outcomes.
- Additionally, disc heights at both index and adjacent levels have been found to be less than the smallest available implant height.

METHODS

Radiographic Outcomes	 Middle disc space height was measured on preoperative and 6 weeks postoperative lateral radiographs to quantify the magnitude of disc space distraction Patients were grouped into <2mm distraction and >2mm distraction groups
Radiographic Measurements	 Operative segment lordosis Segmental range of motion (ROM) on flexion/extension Global Cervical (C2-C7) ROM on flexion/extension
Patient Reported Outcomes (PROs)	 Neck Disability Index (NDI) Visual Analog Scale (VAS) Neck and Arm Veterans RAND 12-Item Health Survey (VR-12) Short Form 12-Item Health Survey (SF-12)
Statistical Analysis	 Independent samples <i>t</i>-test was used to compare outcomes between groups Multivariate linear regression to adjust for baseline differences

RESULTS

- 44 patients who received cervical TDA at 50 operative levels were included for analysis
- Distraction <2mm was seen at 24 levels, while distraction >2mm was observed at 26 levels
- No baseline differences except for younger age (42.00 ± 7.29 vs 46.70 ± 7.52, p = 0.042)
- No differences in TDA device used

	2 mm traction	> 2 mm Distraction	p-value
70 42.	00 ± 7.29	46.70 ± 7.52	0.042
89 26.	56 ± 2.78	28.69 ± 6.00	0.175
			0.365
%) 12/2	l (57.14%)	10/23 (43.48%)	
%) 9/21	(42.86%)	13/23 (56.52%)	
			0.448
6%) 19/2	l (90.48%)	19/23 (82.61%)	
1%) 2/2	l (9.52%)	4/23 (17.39%)	
			0.499
%) 0/	21 (0%)	2/23 (8.70%)	
5%) 10/2	l (47.62%)	10/23 (43.48%)	
6%) 9/21	(42.86%)	7/23 (30.43%)	
%) 0/	21 (0%)	1/23 (4.35%)	
5%) 2/2	l (9.52%)	3/23 (13.04%)	
			0.136
%) 11/24	4 (45.83%)	18/26 (69.23%)	
%) 11/2-	4 (45.83%)	4/26 (15.38%)	
%) I/24	4 (4.17%)	2/26 (7.69%)	
%) I/24	4 (4.17%)	2/26 (7.69%)	
.74 36.2	5 ± 21.56	30.27 ± 20.00	0.345
	74 36.2	74 36.25 ± 21.56	

RESULTS

- No preoperative differences except for less segmental lordosis (1.05 ± 3.79° vs 4.40 ± 4.12°, p = 0.004) among patients with
 <2mm distraction
- At 6 weeks postop and final follow up,
 <2mm distraction had significantly greater
 C2-C7 ROM
- <2mm distraction resulted in significantly greater improvement in ROM from preop to final follow up

	All Levels	< 2 mm Distraction	> 2 mm Distraction	p-value	
<u>Preoperative</u>					
Segmental Lordosis	2.79 ± 4.27	1.05 ± 3.79	4.40 ± 4.12	0.004	
Segmental ROM	6.28 ± 3.81	6.70 ± 4.76	5.87 ± 2.61	0.519	
C2-C7 ROM	40.41 ± 18.56	40.96 ± 24.04	39.85 ± 11.41	0.860	
<u>6 Weeks Postop</u>					
Segmental Lordosis	5.55 ± 6.68	3.85 ± 6.77	7.12 ± 6.33	0.517	
Segmental ROM	8.55 ± 3.88	8.05 ± 4.15	10.26 ± 2.39	0.404	
C2-C7 ROM	47.97 ± 14.79	51.18 ± 14.51	38.32 ± 12.10	0.022	
<u>Final Postop</u>					
Segmental Lordosis	6.30 ± 6.59	5.00 ± 6.68	7.50 ± 6.40	0.894	
Segmental ROM	8.54 ± 4.47	9.21 ± 5.50	7.92 ± 3.25	0.915	
C2-C7 ROM	45.25 ± 15.80	54.28 ± 13.75	36.23 ± 12.31	0.004	
<u>Delta (Δ)</u>					
Segmental Angle	3.50 ± 6.83	3.08 ± 7.18	3.86 ± 6.64	0.538	
Segmental ROM	2.20 ± 5.54	2.39 ± 6.00	2.03 ± 5.26	0.277	
C2-C7 ROM	2.20 ± 21.02	11.36 ± 21.19	-6.96 ± 16.86	0.009	
Bold p-value denotes statistical significance; ROM, Range of Motion					

RESULTS

- No differences in baseline PROMs between groups
- Significant improvement was noted for both groups in all PROMs (p<0.05), except for SF12 MCS and VR12 MCS
- After controlling for baseline differences, distraction <2mm resulted in better SF12 PCS,VR12,VAS Arm, and VAS Neck, as well as in greater improvement in VAS Neck and NDI

	All Levels	< 2 mm Distraction	> 2 mm Distraction	p-value
<u>Preoperative</u>				
SF12 PCS	35.43 ± 9.45	33.58 ± 8.46	37.14 ± 10.14	0.641
SF12 MCS	51.76 ± 9.10	52.23 ± 7.36	51.33 ± 10.59	0.478
VRI2 PCS	37.59 ± 10.44	35.88 ± 9.79	39.17 ± 10.95	0.890
VRI2 MCS	54.15 ± 8.79	54.34 ± 7.24	53.97 ± 10.15	0.400
VAS Arm	5.23 ± 2.80	5.76 ± 2.73	4.77 ± 2.84	0.476
VAS Neck	5.25 ± 2.52	5.80 ± 2.45	4.76 ± 2.53	0.163
NDI	36.09 ± 15.83	41.81 ± 14.10	31.08 ± 15.84	0.381
<u>Final Postop</u>				
SF12 PCS	45.47 ± 10.45	47.30 ± 9.03	43.55 ± 11.65	0.038
SF12 MCS	55.11 ± 6.98	55.30 ± 6.57	54.91 ± 7.53	0.618
VRI2 PCS	47.99 ± 9.37	49.78 ± 7.57	46.12 ± 10.80	0.026
VRI2 MCS	59.12 ± 7.09	59.65 ± 6.41	58.57 ± 7.84	0.257
VAS Arm	1.55 ± 2.35	0.68 ± 1.21	2.38 ± 2.85	0.017
VAS Neck	2.28 ± 2.59	1.18 ± 1.79	3.34 ± 2.83	0.008
NDI	14.99 ± 14.75	10.77 ± 11.55	19.22 ± 16.55	0.058
<u>Delta (Δ)</u>				
SF12 PCS	9.88 ± 11.91	13.37 ± 9.70	6.23 ± 13.09	0.071
SF12 MCS	2.95 ± 8.18	2.86 ± 8.71	3.05 ± 7.80	0.829
VRI2 PCS	9.98 ± 11.57	13.29 ± 9.93	6.52 ± 12.35	0.118
VRI2 MCS	4.80 ± 8.47	5.36 ± 9.39	4.22 ± 7.57	0.769
VAS Arm	-3.63 ± 3.85	-4.98 ± 3.22	-2.39 ± 4.03	0.063
VAS Neck	-2.89 ± 3.64	-4.59 ± 2.75	-1.33 ± 3.70	0.005
NDI	-20.36 ± 20.86	-30.46 ± 15.08	-10.71 ± 21.32	0.050

Bold p-value denotes statistical significance; SF12, Short Form 12-Item Health Survey; VR12 Veteran RAND 12-Item Health Survey; PCS, Physical Component Score; MCS, Mental Component Score; VAS, Visual Analog Scale; NDI, Neck Disability Index

CONCLUSION

Patients with <2mm disc height difference had increased C2-C7 ROM at both 6 weeks and final follow-up but not segmental ROM.

Patients with <2mm disc height difference had significantly greater improvement in VAS neck and NDI after controlling for baseline differences.

Limiting differences in disc space height to <2mm may result in more harmonious kinematics between all cervical levels, allowing for improved global ROM and neck pain.

Does Disc Distraction After Cervical Total Disc Arthroplasty Impact Range of Motion and Patient Reported Outcomes?

THANK YOU!

Authors: Vincent P. Federico, MD; Athan G. Zavras, BS; Alexander Butler, MD; Mohammed A. Munim, BS; Michael T. Nolte, MD; Wylie Lopez, MD; Gregory D. Lopez, MD; Howard S. An, MD; Matthew W. Colman, MD; Frank M. Phillips, MD

Rush University Medical Center, Division of Orthopaedic Spine Surgery

RUSH UNIVERSITY MEDICAL CENTER

