

OLIF as a Revision Solution Following Posterior Lumbar Decompression Surgery

Khanathip Jitpakdee^{1,2}, Jung Hoon Kim¹, Jin-Sung Kim¹

¹Department of Neurosurgery, Seoul St. Mary's Hospital College of Medicine, The Catholic University of Korea Seoul, Republic of Korea ²Department of Orthopedics, Queen Savang Vadhana Memorial Hospital, Siracha, Chonburi, Thailand

> September 29 – October 1, 2022 The Bellagio | Las Vegas, NV

Background and Objectives

Background

- Revision surgery following a posterior lumbar decompression is challenging and at risk of complications, especially through the previous posterior approach.
- Revision surgery with the lateral approach can be an effective and safe procedure for this condition

Objectives

 To evaluate the clinical, radiographic outcomes, and complications following OLIF, when performed as revision method in patients who had previously undergone posterior lumbar decompression surgery

Methods

• Retrospective study

Included Subjects

- Revision surgery with OLIF at the same level after posterior lumbar decompression
- December 2014 to March 2021
- Complete follow-up data for at least 1 year

Outcome Variables

Ч	0-0-0	רל
		:
		-
L		

- Visual analog scale of back (VASB) and leg pain (VASL)
- Plain radiograph and computed tomography (CT) scan
 Disc height foraminal height segmental angle lumbar lordosis
 - Disc height, foraminal height, segmental angle, lumbar lordosis, cage subsidence, and bony fusion grading
- Perioperative complications

Results

Demographic data

Characteristics	N = 24 (25 levels)	
Male/female ratio	11/13	
Age (years)	70.4±7.3	
Body mass index (kg/m²)	25.8±2.2	
Charlson Comorbidity Index (CCI)	0.7±0.9	
Current smoking status (Yes:No)	1:23	
Mean follow up period (months)	28.1±21.2	
Duration of symptom (months)	10.1±4.9	
Prior operation level, N (%)		
L2-3	1	
L3-4	7	
L4-5	16	
L5-S1	1	
Type of prior decompression surgery		
Discectomy	5	
Unilateral laminectomy (or laminotomy)	9	
Bilateral laminectomy (or laminotomy)	11	

Clinical and radiographic outcomes

	Preoperative	Postoperative	P-value*
VAS for back pain	6.2±2.1	1.3±1.8	< 0.005
VAS for leg pain	7.4±1.2	1.3±2.0	< 0.005
DH-A	9.4±4.2	15.0±3.3	< 0.005
DH-M	6.9±3.1	11.5±2.4	< 0.005
DH-P	4.7±2.5	7.4±2.0	< 0.005
FH	13.7±3.6	17.4±3.3	< 0.005
SL	12.1±7.4	18.0±8.1	< 0.005
LL	37.3±15.7	46.5±11.9	< 0.005

†Abbreviations : DH-A, M, P (Disc height anterior, middle, posterior); FH (Foraminal height); SL (Segmental lordosis); LL (Lumbar lordosis)

‡All results included in the table were expressed as mean±SD

Results

Additional outcomes and complications			
Outcomes	N = 24 (25 levels)		
Postoperative length of stay (days)	10.1		
Cage subsidence			
> 2mm	5		
< 2mm	10		
Fusion grading			
1	15		
II	10		
111	0		
IV	0		
Complication			
Sympathetic chain injury-related symptoms	2		
Intraoperative (dural tear, nerve root injury, etc.)	0		
Wound-related (infection, dehiscence, etc.)	0		
ASD during F/U period	1		
Fusion failure	0		

† Abbreviations : ASD (Adjacent segment degeneration)

 \ddagger All results included in the table were expressed as mean \pm SD

M/78; Failed Back Surgery Syndrome; S/P Hemilaminectomy Lt. L4-5, 12 yrs ago **Revision with OLIF L4-5 with PPS**

Discussion

- Revision surgery with OLIF significantly improved clinical and radiographic outcomes for patients with previous posterior lumbar decompression surgery, with low complications.
- Advantages included minimal blood loss, short hospital stay, low complications, and high fusion rates.

• Further comparative studies with conventional revision surgery are required.

Conclusion

OLIF can be performed as an effective and safe minimally invasive procedure for revision surgery in patients who previously underwent posterior lumbar decompression surgery.

Thank you

Khanathip Jitpakdee, MD

The Catholic University of Korea Seoul St. Mary's Hospital, Republic of Korea

Queen Savang Vadhana Memorial Hospital, Thai Red Cross Society Siracha, Chonburi, Thailand

