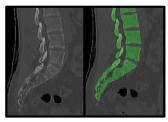
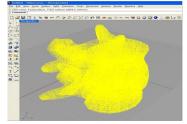

INTRODUCTION

- Prepsoas app. Oblique lateral interbody fusion (OLIF)
 - Orthogonal maneuver trialing & cage insertion

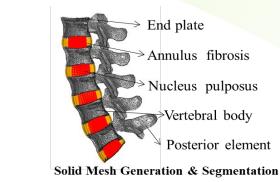
INTRODUCTION


- Purpose of this study
- to evaluate the biomechanical effect of cage position and insertion angle on postoperative stability and subsidence following OLIF using FE model.
- Output variables
- Likelihood of yield of cage
- Risk of subsidence
- Hypothesis
- Most stable with vertical and anteriorly placed cages
- Risk of subsidence higher in greater cage insertion angle and more posteriorly placed cages


Cage insertion position

MATERIAL AND METHODS

Construction of Intact model

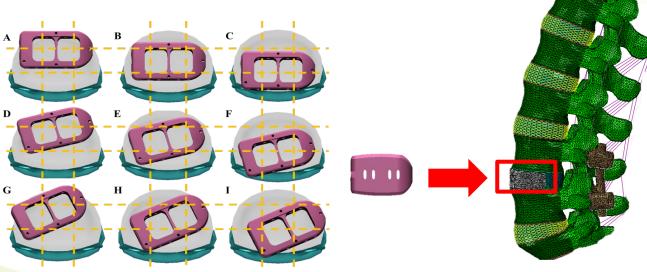

Geometry Data Extraction from CT data (Mimics v13.0, Materialise)

Surface model Generation (Rhinoceros 3.0)

+259-

Politica Prile Camaria

Biomechanical comparison of anterior lumbar interbody fusion: stand-alone interbody cage versus interbody cage with pedicle screw fixation - a finite element analysis Choi KC et al. <u>BMC Musculoskelet</u> <u>Disord . 2013 Jul 26;14:220.</u>

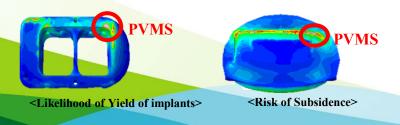


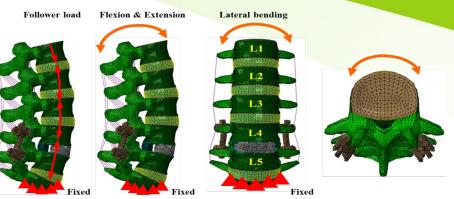
Intact Lumbar FE Model

MATERIAL AND METHODS

Construction of fusion model ; L4-5 segment

- ① Type A : Ant_0°
- ② Type B : Mid_0°
- ③ Type C : Post_0°
- **④** Type D : Ant_15°
- **(5)** Type E : Mid_15°
- 6 Type F : Post_15°
- **⑦** Type G : Ant_25°
- **8** Type H : Mid_25°
- **9 Type I : Post_25°**


<Surgical model Types>


<Cage insertion position>

MATERIAL AND METHODS

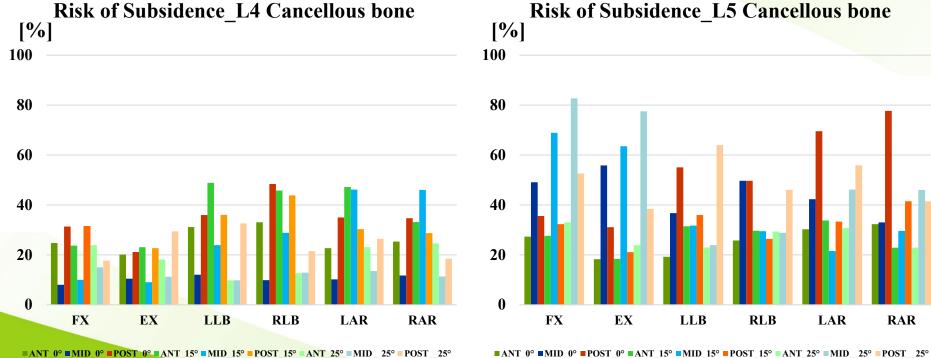
Output variables

- Likelihood of Yield of implants
 - Peak von Mises stress / Yield strength of material * 100%
 - Implants (OLIF Cage)
 - Yield strength : 100MPa (PEEK)
- Risk of Subsidence
 - Peak von Mises stress at Vertebral body
 - / Yield strength of cancellous bone * 100%
 - L4 Lower cancellous bone
 - L5 Upper cancellous bone
 - Yield strength : 16.3MPa (Cancellous bone)



<Loading & Boundary condition>

- Compressive follower load
 - 400N
- Pure moment
 - L1 upper endplate pure moment 10Nm
 - 1 Flexion
 - 2 Extension
 - ③ Lateral bending
 - (4) Axial rotation
- Boundary condition
 - Pedicle screw Bone tie contact
 - S1 endplate secured


RESULTS

ANT_0° MID_0° POST_0° ANT_15° MID_15 POST_15° ANT_25° MID_25° POST_25°

<Likelihood of Yield of implants>

RESULTS

ANT 0° MID 0° POST 0° ANT 15° MID 15° POST 15° ANT 25° MID 25° POST 25°

CONCLUSION

- Our study demonstrated that during OLIF, insertion of cage more anteriorly with less insertion angle provided better stability and less chance of subsidence.
- This study suggests that cage should be inserted more anteriorly and vertically during OLIF procedure to maintain postoperative stability and to reduce cage subsidence.