

NYU Langone Medical Center Division of Spinal Surgery Departments of Neurological and Orthopaedic Surgery New York Spine Institute

NAVIGATIONAL ASSISTANCE IN INTERBODY DEVICE POSITIONING OPTIMIZES PERI- AND POST-OPERATIVE OUTCOMES IN MINIMALLY-INVASIVE SPINE SURGERY

Peter Tretiakov BS, Oscar Krol BA, Bailey Imbo BA, Rachel Joujon-Roche BS, Tyler Williamson MS, Shaleen Vira MD, Bassel Diebo MD, Stephane Owusu-sarpong MD, Jordan Lebovic MD, Renaud Lafage MS, Virginie Lafage PhD, Dean Chou MD, Praveen Mummaneni MD, Saman Shabani MD, M. Burhan Janjua MD, Paul Park MD, Peter G. Passias MD

Background

- The use of minimally invasive surgical (MIS) techniques continues to be on the rise since its introduction in the early 2000s, particularly as pressures increase to drive down post-operative complications and healthcare costs.
- Khan et al., 2015; Hu Studies have demonstrated various benefits of MIS Hocklev et al., 2019 versus open procedures, such as reduced blood loss, use of opiates, and length of hospital stay.

et al., 2016:

To investigate if minimally-invasive surgery utilizing navigational guidance for interbody device placement will demonstrate optimized outcomes, reduced post-operative complications and radiographic deformity markers versus non-optimized patients by 1Y

https://orthoinfo.aaos.org/en/tre atment/minimally-invasivespine-surgery/

> Minimally Invasive Versus Open Transforamina Lumbar Interbody Fusion Surgery: An Analysis of Opioids, Nonopioid Analgesics, and Perioperative Characteristics

"Open" TLIF

https://www.pauljeffordsmd.com/minimally-invasive-surgical-mis-tlif

Materials and Methods: Study Design, Inclusion Criteria, Statistical Analysis, and Defining Optimization

- Retrospective data analysis of a single academic spine center.
- Inclusion criteria consisted of:
 - Age >18 years undergoing operative treatment of lumbar deformity via MIS technique and IBD placement
 - Availability of baseline (BL) and perioperative (1Y) radiographic, surgical, and patient reported outcome data
- Means comparison analysis assessed differences in clinical, radiographic, and patient-reported outcomes at BL and 1Y post-op.

Fig. 9 Schematic diagram of the 4 proportional radiographic parameters that describe the global alignment and proportion in the sagittal plane. Note that the range of disproportion is wider in the anterior direction, indicating that retroversion, hypolordosis, and positive global malalignment are better tolerated than anteversion, hyperlordosis, and negative global malalignment in terms of mechanical complications. Also note that the margins of disproportion are in the shape of a cone, indicating that greater angular deviations from the ideal are tolerated at higher spinopelvic

- At 1Y, an optimized outcome (Optimized) was defined as meeting at least 2 of the following 5 criteria:
 - 1) improving in at least 1 GAP or ageadjusted criteria at 1Y
 - 2) achieving ideal PT per SRS-Schwab at 1Y
 - 3) Achieving ideal PI-LL per SRS-Schwab at 1Y
 - 4) No adjacent segment reoperation
 - 5) No complication requiring reoperation

NYU Langone Health

NYU Langone Medical Center Division of Spinal Surgery Departments of Neurological and Orthopaedic Surgery New York Spine Institute

Results: Patient Demographics and Surgical Overview

- 20 patients (27.8%) considered optimized
- Demographic comparison between cohorts revealed optimized patients were significantly more likely to be female

Demographic Factors	Optimized	Non- Optimized	p-value
Age	64.0±10.3	58.4±13.8	.103
Gender	70% Female	56% Female	.013
BMI	27.7±5.18	29.2±5.67	.325

*Bolded p-value denotes a significant difference

Comparison of surgical factors between Optimized vs Non-Optimized patients.

Parameter	Optimized (y/n)	Mean	Std. Deviation	p-value
	No	22.00	2.84	
UIV	Yes	21.05	3.43	.240
	No	24.80	0.69	
LIV	Yes	24.50	0.95	.037
	No	2.74	3.24	
Levels Fused	Yes	3.45	4.10	.446
	No	1.00	0.00	
BMP (y/n)	Yes	0.45	0.52	.001
	No	342.98	128.55	
Op Time (min)	Yes	355.35	207.52	.001
	No	811.47	1426.37	
EBL (mL)	Yes	742.50	1094.52	.846
	No	5.32	3.41	
LOS (days)	Yes	6.05	5.59	.504

Results: Surgical Details

• Optimized patients were less likely to undergo ALIF (p<.001), and more likely to undergo LLIF, XLIF, or OLIF (p <.001).

Brandar	Optimized		Std.	
Parameter	(y/n)	Mean	Deviation	p-value
	No	.250	.437	
ALIF	Yes	.000	.000	<.001
	No	.019	.139	
LLIF/XLIF/OLIF	Yes	.200	.410	<.002
	No	.750	.437	
TLIF	Yes	.850	.366	>.05
	No	.000	.000b	
PLIF	Yes	.000	.000b	>.05

- Optimized patients:
 - Were less likely to be administered BMP (p=.001),
 - Experienced significantly higher mean op time (p=.001)

Comparison of surgical factors between Optimized vs Non-Optimized patients.

Parameter	Optimized (y/n)	Mean	Std. Deviation	p-value
	No	22.00	2.84	
UIV	Yes	21.05	3.43	.240
	No	24.80	0.69	
LIV	Yes	24.50	0.95	.037
	No	2.74	3.24	
Levels Fused	Yes	3.45	4.10	.446
	No	1.00	0.00	
BMP (y/n)	Yes	0.45	0.52	.001
	No	342.98	128.55	
Op Time (min)	Yes	355.35	207.52	.001
	No	811.47	1426.37	
EBL (mL)	Yes	742.50	1094.52	.846
	No	5.32	3.41	
LOS (days)	Yes	6.05	5.59	.504

*Bolded p-value denotes a significant difference

Results: Post-Operative Radiographic Outcomes

Key Findings:

- Compared to Non-Optimized patients,
 Optimized patients had significantly:
 - Lower mean S1PT at 1Y (p=.038)
 - Lower L1PA at 1Y (p=.021)
 - L4PA at 1Y (p=.009)

Parameter	Optimized (y/n)	Mean	Std. Deviatio <u>n</u>	p-value
	No	33.41	5.45	
S1SS	Yes	30.07	8.33	.706
	No	34.86	4.44	
S1PT	Yes	20.31	6.01	.038
	No	68.27	5.54	
S1PI	Yes	50.38	8.24	.058
	No	17.54	2.04	
PI-LL	Yes	4.09	7.41	.106
	No	-32.03	6.43	
L4S1	Yes	-31.82	9.84	.983
	No	-26.75	7.15	
L1L4	Yes	-19.19	9.11	.440
	No	20.50	7.54	
L4PA	Yes	11.07	2.91	.009
	No	20.18	5.87	
L1PA	Yes	8.95	4.08	.021

*Bolded p-value denotes a significant difference

6

Results: Post- Operative Complications

Parameter	Optimize d (y/n)	Mean	Std. Deviatio n	p-value
	No	0.33	0.48	
Any IntraOp Complication	Yes	0.10	0.32	<.001
	No	0.62	0.49	
Any Post-Op Complication	Yes	0.33	0.49	.098
	No	0.12	0.33	
Neurological Complication	Yes	0.00	0.00	.009
	No	0.00	0.00	
Deep Infection	Yes	0.00	0.00	-
Return to OR Within 30	No	0.04	0.21	
Days	Yes	0.00	0.00	.498
Return to OR Within 90	No	0.04	0.21	
Days	Yes	0.00	0.00	1.498

*Bolded p-value denotes a significant difference

NYU Langone Medical Center Division of Spinal Surgery Departments of Neurological and Orthopaedic Surgery New York Spine Institute

Key Findings:

- Despite increased operative time, optimized patients demonstrated significantly:
 - Lower rates of intraoperative complications (p<.001)
 - Lower rates of post-operative neurological complications (p=.009)

Conclusions

- Robot or navigation-assisted minimally-invasive surgery (MIS) is being increasingly implemented to increase surgeon accuracy in the placement of interbody devices, and may help optimize post-operative surgical, radiographic and patient-reported outcomes
- Despite increased operative time associated with optimizing IBD placement in MIS patients, such patients demonstrated significantly improved radiographic deformity markers and reduced neurological complication rates by 1Y.

Thank you for your attention!

