Intraoperative Neuromonitoring for Lateral Lumbar Interbody Fusion: An Intraoperative Protocol to Avoid Postoperative Neurologic Deficit

Nicole C. Record, DO, Alissa Carnelian, AuD, CNIM, Kristina Brady, AuD, CNIM, Stacie Tran, MPH, Daniel Thibaudeau, MD, Behrooz Akbarnia, MD, Robert K. Eastlack, MD, Gregory M. Mundis Jr., MD

San Diego Spine Foundation
Scripps Clinic, San Diego, CA, USA

Society for Minimally Invasive Spine Surgery
Las Vegas, NV
October 31-November 2, 2019

Disclosure: We received a Scripps Clinic Medical Group (SCMG) grant for this project
Background

- **Goals/Advantages**
 - Indirect decompression, deformity correction, interbody fusion
 - Avoid complications with other interbody approaches (ALIF, TLIF/PLIF)

- **Risk** - Neurologic Injury to individual nerves or nerve plexus
 - Intra-operative neuromonitoring
 - EMG, SSEP (Silverstein et al, 2014), MEP (Block et al, 2015)

Intraoperative checklists have been studied and created for spine surgery when neuromonitoring is used (Vitale et al, 2014)

- LLIF is frequently performed with neuromonitoring
 - No consensus on extent of NM modalities

- No checklists or protocol exist for alerts that occur during LLIF procedures
 - Unique/additional potential causes from other surgical approaches

Purpose

- **Primary purpose:** To investigate the utility of neuromonitoring (NM) in LLIF and the development of an intra-operative protocol

- **Secondary purpose:**
 - In depth evaluation of NM alerts: including timing, levels, diagnosis, association with dilator stim
 - Evaluation of Post op deficits (POD) and associated risks
Methods

- Retrospective review of all LLIF cases
 - Single institution
 - 2 experienced LLIF surgeons with 2 neurophysiologists
 - All indications for surgery (degenerative, deformity)
- Study Period: October 2014-October 2016
- Inclusion
 - At least 3 month follow-up
 - 2 year follow-up available
 - No concurrent Interbody (ALIF or PLIF/TLIF)
 - Complete neuromonitoring records
- Data Collection
 - Motor and sensory grading, clinical outcomes: Preop, 1 month and 3 months post op
 - Intra-operative: NM data, dilator stim alerts, Retractor timing (from time of insertion to time of removal from psoas)
- Neuromonitoring
 - NVM5
 - Proprietary monitoring system
 - Used for free run and triggered EMG
 - Cadwell Cascade Pro
 - SSEP
 - Saphenous as femoral nerve surrogate
 - posterior tibial, and ulnar nerve
 - TcMEP
 - adductor magnus, vastus medialis, vastus lateralis, tibialis anterior, and small muscles of the foot
 - Cremaster/mons for genitofemoral
 - Alert = sustained EMG, ↓SSEP 50% and/or 10% latency increase, ↓MEP 50% from baseline
INTRAOPERATIVE PROTOCOL

Evaluation
- During which part of the procedure
- Type: ischemic, traumatic, anesthetic

Checklist: Assess potential causes and solutions
- Retractor time?
- Nerve visualized in field?
- Movement- retractor migration or muscle creep into field?
- Tissue within disc space? (causing bouncing of retractor/instruments during insertion)
- Trial or graft height-stretch
- Bed break-prolonged time with stretch

Response
- Based on findings of evaluation and checklist
Results - DEMOGRAPHICS and CLINICAL

Demographics
- 83 patients were included with complete data
- 7 excluded for incomplete follow up
- 76 patients (123 levels) were studied

Clinical Outcomes
- At one month post op only NRS leg showed significant improvement
 - 6.8 → 4.4 (p=0.003)
- By 3 months all three outcome questions saw improvement
 - NRS Back: 7 → 4.7 (p<0.001)
 - NRS leg: 7.1 → 3.4 (p<0.001)
 - ODI: 45.3 → 30.8 (p<0.001)

Demographics
- M:F 43:33
- Mean age 67 ± 12.1
- Avg PSF levels: 2.3 ± 2.4
- Avg interbody levels was 1.6 ±0.9.
- Avg EBL: 193.2 ±312.6 cc
- Avg OR Time 204.2 ±109.2 min

Diagnosis
- Degenerative 46
- Deformity 30

Clinical Outcomes
- At one month post op only NRS leg showed significant improvement
 - 6.8 → 4.4 (p=0.003)
- By 3 months all three outcome questions saw improvement
 - NRS Back: 7 → 4.7 (p<0.001)
 - NRS leg: 7.1 → 3.4 (p<0.001)
 - ODI: 45.3 → 30.8 (p<0.001)
Results - ALERTS

- 14 (18.4%) had NM alerts triggering the protocol
 - 1 (7%) patient woke up with a POD (sensory and motor)
 - 9/14 (64.2%) had dilator stim threshold <10
- 62 (81.6%) had no alert
 - 37 (59.7%) had dilator stim <10 → 3 (4.8%) with POD (1 sens & 2 motor).
- 4/7 with lateral thigh numbness had alerts
- 5/12 with IP weakness had a NM alert
- Avg time to first alert → 13 min

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuromonitoring Alerts</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>POD</td>
<td>1</td>
<td>0.76</td>
</tr>
<tr>
<td>(both sensory + motor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilator Stim</td>
<td></td>
<td>0.272</td>
</tr>
<tr>
<td>Dilator Stim <10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Dilator Stim >10</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Dilator Stim No Data</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Alerts</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSEP</td>
<td>3</td>
</tr>
<tr>
<td>MEP</td>
<td>6</td>
</tr>
<tr>
<td>EMG</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part where 1st alert occurred</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retractor insertion</td>
<td>4</td>
</tr>
<tr>
<td>Disc prep</td>
<td>3</td>
</tr>
<tr>
<td>Trial</td>
<td>2</td>
</tr>
<tr>
<td>Grafting</td>
<td>4</td>
</tr>
<tr>
<td>Closing</td>
<td>1</td>
</tr>
</tbody>
</table>
Only considered deficit if was not present preop

- 7 (10.9%) patients had POD (3 sensory, 3 motor, 1 both)
 - 50% resolved by 1 month follow-up,
 - 85% resolved by 6 months
 - All resolved within 25 months
 - Patient with both sensory and motor deficit resolved by 25 month follow up

- 9 (11.8%) patients had lateral thigh numbness
 - 78% resolved by 1 month
 - 89% resolved by 6 months
 - All resolved by 16 months

- 12 (15.8%) patients had psoas weakness
 - 10 resolved by 1 month follow up visit (9 resolved by discharge from hospital)
 - 1 lasted >12 weeks
 - 4 had an associated POD

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>POD</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Motor</td>
<td>3</td>
<td>1 Quad (4/5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Tib Ant (4/5)</td>
</tr>
<tr>
<td>Sensory</td>
<td>3</td>
<td>1 L2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 L2-L5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 L4-S1</td>
</tr>
<tr>
<td>Both</td>
<td>1</td>
<td>L Quad (3/5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L IP (3/5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L3</td>
</tr>
<tr>
<td>NM Alert</td>
<td>1</td>
<td>Both</td>
</tr>
<tr>
<td>Lateral Thigh Numbness</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Psoas Weakness</td>
<td>12</td>
<td>Both (M+S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tib Ant (M)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L2-L5 (S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L4-S1 (S)</td>
</tr>
</tbody>
</table>
Results: Diagnosis and Interbody Fusion

Diagnosis
- Patients carrying a *deformity* diagnosis were more likely to have a post operative *sensory deficit*.

<table>
<thead>
<tr>
<th></th>
<th>Degenerative</th>
<th>Deformity</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>46</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Postop Deficit</td>
<td>2</td>
<td>5</td>
<td>0.069</td>
</tr>
<tr>
<td>Sensory Deficit</td>
<td>0</td>
<td>4</td>
<td>0.011</td>
</tr>
<tr>
<td>Motor Deficit</td>
<td>2</td>
<td>2</td>
<td>0.658</td>
</tr>
</tbody>
</table>

Interbody Fusion (IBF)
- **Number of IBF Levels**
 - When comparing overall POD by level no significant difference was found.
 - A multivariant logistic regression: *postoperative sensory deficit* was 15x more likely with 3 level IBF than in a single level (OR 15.67, CI 1.23, 199.92).
- **Location of IBF**
 - No association with POD
 - Most ALERTS at L3-4
 - ROC curve-Critical retractor time threshold 24.5 minutes.
1. IOM protocol was triggered in 14 patients with only 1 POD
2. Psoas weakness had an association with POD
 • Specifically sensory
3. Deformity cases were more likely to have a sensory deficit
 • 3+ IBF levels had increased risk of sensory deficit
4. No difference in POD by level
5. L3-L4 had higher risk of NM alert
6. Critical retractor time threshold **24.5 minutes** for sensory
Neuromonitoring can be used as an adjunct to help alert potential deficits to trigger an intraoperative checklist.

- 6/7 POD were not associated with an alert highlighting the need to better understand the functional neuroanatomy.