A Dual Screw Technique for Vertebral Compression Fractures Using Robotic Navigation in the Osteopenic Lumbar Spine

An In-Vitro Biomechanical Analysis

Michael P. Steinmetz, MD
Jessica R. Riggleman, BS
Jonathan A. Harris, MS
John B. Butler, MD
Chelsea H. Wright, BS
Mir M. Hussain, BS
Brian J. Ferrick, BS
Brandon S. Bucklen, PhD
Disclosures:

• M.P.S.
 – Grants/Research Support: Globus Medical, Inc.
 – Consulting Fees: Globus Medical, Inc.; Intellirod
 – Speakers’ Bureau: Globus Medical, Inc.
 – Royalty/Patent Holder: Zimmer/Biomet; Elsevier; Theime

• J.B.B.
 – None

• C.A.W.
 – Grants/Research Support: Globus Medical, Inc.

• J.R.R.; J.A.H.; M.M.H.; B.J.F.; B.S.B.
 – Salary: Globus Medical, Inc.
Objective: To quantify the in-vitro stability of the novel technique utilizing both cortical screws (CS) and pedicle screws (PS) in the same vertebral level using a robotic-assisted guidance system to improve posterior fixation in patients with severe osteopenia and VCF.

Experimental Endpoints:
- Flexion-Extension ROM
- Lateral Bending ROM
- Axial Rotation ROM
Methods: Vertebral Compression Fracture

- Holes were created at L3 using a 1/8” drill bit
 - Weakened cortical shell
 - Allowed for controlled burst fracture

- Custom-built drop tower guided the axial load onto specimen
 - Produced complete destabilization of the vertebral body
 - 45 lb. circular weight was dropped on the vertically mounted specimen
Methods: Surgical Technique

Technique:

• Pedicle screws were inserted using a Weinstein converging trajectory.
• Cortical screws were inserted using the modified “straight ahead” cortical screw trajectory.
• Screws were planned using robotic-guidance in specimens pre-selected to accommodate 2 screws per pedicle.

Axial radiograph: L4 vertebral body, PS+CS group
Methods: Constructs

2 Groups \(n=7 \)/group Total \(n=14 \)

PS Group

PS + CS Group

PS 2-Rod

PS 4-Rod

RTRC

PS + CS 2-Rod

PS + CS 4-Rod
Methods: Constructs

2 Groups n=7/group Total n=14

PS Group
- PS 2-Rod
- PS 4-Rod RTRC

PS+CS Group
- PS + CS 2-Rod
- PS + CS 4-Rod
Methods: ROM

ROM
- Intact Condition
- Pedicle Screw (PS)
 - Two Rod vs. Four Rod
- Pedicle Screw + Cortical Screw (PS+CS)
 - Two Rod vs. Four Rod

Test
- Flexion-Extension (FE)
- Lateral Bending (LB)
- Axial Rotation (AR)

Parameters
- Max Torque: ± 7.5 N-m
- Markers at L1, L2, L4, L5
- VCF at L3
Results: ROM

*R vs. Intact (*p < 0.05)
Conclusions

• Multi-rod reconstruction increased stability, regardless of single or dual screw technique in all loading-modes.
• 4-rod reconstruction with dual screws provided the most fixation in FE and AR, with the additional bony anchor points adding stability as compared to compared to 2-rods with rod-to-rod connectors; however statistical significance was not achieved.
• Further testing regarding long-term performance of instrumentation may further elucidate construct differences.